Epigenomic features of DNA G-quadruplexes and their roles in regulating rice gene transcription.

State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China. Institut de Chimie Moleculaire, ICMUB, CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France. Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China. Jiangsu Key Laboratory of Crop Genetics and Physiology and Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, Jiangsu 225009, China. Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.

Plant physiology. 2022;(3):1632-1648

Other resources

Abstract

A DNA G-quadruplex (G4) is a non-canonical four-stranded nucleic acid structure involved in many biological processes in mammals. The current knowledge on plant DNA G4s, however, is limited; whether and how DNA G4s impact gene expression in plants is still largely unknown. Here, we applied a protocol referred to as BG4-DNA-IP-seq followed by a comprehensive characterization of DNA G4s in rice (Oryza sativa L.); we next integrated dG4s (experimentally detectable G4s) with existing omics data and found that dG4s exhibited differential DNA methylation between transposable element (TE) and non-TE genes. dG4 regions displayed genic-dependent enrichment of epigenomic signatures; finally, we showed that these sites displayed a positive association with expression of DNA G4-containing genes when located at promoters, and a negative association when located in the gene body, suggesting localization-dependent promotional/repressive roles of DNA G4s in regulating gene transcription. This study reveals interrelations between DNA G4s and epigenomic signatures, as well as implicates DNA G4s in modulating gene transcription in rice. Our study provides valuable resources for the functional characterization or bioengineering of some of key DNA G4s in rice.